大学物理 ›› 2025, Vol. 44 ›› Issue (10): 1-.doi: 10.16854/j.cnki.1000-0712. 250383

• 专家视点 •    下一篇

圆环上理想气体系统的熵守恒和熵增

周海军   

  1. 1) 中国科学院理论物理研究所,北京市中关村东路55号,邮编100190
    2) 中国科学院大学物理科学学院,北京市怀柔区雁栖湖东路1号,邮编101408
    3) 浙江大学高等物理研究院,杭州市西湖区余杭塘路866号,邮编310027
  • 收稿日期:2025-07-18 修回日期:2025-10-10 出版日期:2025-12-20 发布日期:2025-12-25
  • 作者简介:周海军(1973—),博士,研究员,主要研究领域为统计物理学. Email: zhouhj@itp.ac.cn
  • 基金资助:
    本课题得到国家自然科学基金(No.12247104,12447101)资助

Entropy conservation and entropy increase of ideal gas system on a ring

Hai-Jun Zhou   

  1. 1) Institute of Theoretical Physics,Chinese Academy of Sciences,Zhong-Guan-Cun East Road 55,Beijing 100190
    2) School of Physical Science,University of Chinese Academy of Sciences,
    Yanqihu East Road 1,Beijing 101408
    3) Institute for Advanced Physical Studies,Zhejiang University,Yuhangtang Road 866,Hangzhou 310027
  • Received:2025-07-18 Revised:2025-10-10 Online:2025-12-20 Published:2025-12-25

摘要: 本文探讨一维圆环上的经典理想气体微观状态熵,证实粒子的位置分布在圆环上逐渐趋向均匀化,位置熵随时间递增直到最大值,但包含位置不确定性和速度不确定性在内的微观状态总熵在数学意义下严格守恒。在同一时刻位置非常接近的粒子的速度逐渐呈现出量子化特征,相邻分立速度的间隔在长时间极限趋向于零。这意味着在物理测量意义下,由于观察者的速度分辨率不可能无限小,测量到的系统微观状态总熵在长时间极限必定增加。该简单系统可作为教学模型增进对热力学第二定律的理解。

关键词: 熵守恒, 熵增, 理想气体, 速度量子化, 速度分辨率, 最大熵

Abstract: The entropy of microscopic configurations of a classical ideal gas system located on a one-dimensional ring is investigated. It is verified that the distribution of particles on the ring becomes more and more uniform,and the positional entropy increases with time toward the maximum value,while the total entropy (contributed by positional uncertainty and velocity uncertainty) is conserved in the rigorous mathematical sense. The velocities of particles which are passing through the same position at the same time become more and more quantized,and the gap between adjacent discrete velocity values gradually reduces to zero as time increases. This quantization property means that,as the velocity resolution limit of an observer must be finite in the sense of physical measurement,the measured entropy of microscopic configurations must be increasing with time. This simple system is helpful for understanding the second law of thermodynamics.

Key words: entropy conservation, entropy increase, classical ideal gas, quantization of velocity, velocity resolution limit, maximum entropy